fbpx

Výskum grafénu odhaľuje nové možnosti pre elektronické technológie

Tím výskumníkov odhalil, že v grafénovom tranzistore možno vytvoriť sonický tresk a Dopplerové posunuté zvukové vlny, čo dáva nový pohľad na tento svetoznámy materiál a jeho potenciál na použitie elektronických technológií v nanometroch.

Keď sa policajné auto rúti smerom k vám a prechádza okolo s húkajúcou sirénou, môžete počuť výraznú zmenu vo frekvencii hluku sirény. To je Dopplerov efekt. Keď rýchlosť prúdového lietadla prekročí rýchlosť zvuku (asi 760 m/h), tlak, ktorý vyvíja na vzduch, vytvorí rázovú vlnu, ktorú možno počuť ako hlasný nadzvukový bum alebo hrom; toto je Machov efekt.

Vedci z univerzít Loughborough, Nottingham, Manchester, Lancaster a Kansas zistili, že kvantovo-mechanická verzia týchto javov sa vyskytuje v elektronickom tranzistore vyrobenom z vysoko čistého grafénu. Ich nová publikácia, ktorá odhaľuje Dopplerovo posunuté magnetofonónové rezonancie sprevádzané Machovým nadzvukovým a Landauovým rýchlostným efektom, bola publikovaná v Nature Communications.

Grafén je viac ako 100-krát pevnejší ako oceľ, pričom je extrémne ľahký, viac ako 100-krát vodivý ako kremík a má najnižší elektrický odpor pri izbovej teplote zo všetkých známych materiálov. Vďaka týmto vlastnostiam je grafén vhodný pre celý rad aplikácií, vrátane náterov na zlepšenie dotykových obrazoviek v telefónoch a tabletoch a na zvýšenie rýchlosti elektronických obvodov.

Výskumný tím použil silné elektrické a magnetické polia na urýchlenie prúdu elektrónov v atómovo tenkej grafénovej monovrstve zloženej z hexagonálnej mriežky atómov uhlíka.

Pri dostatočne vysokej prúdovej hustote, ekvivalentnej približne 100 miliardám ampérov na meter štvorcový prechádzajúcej cez jednu atómovú vrstvu uhlíka, prúd elektrónov dosiahne rýchlosť 14 kilometrov za sekundu (približne 30 000 mph) a začne otriasať atómami uhlíka, emitujúce kvantované zväzky zvukovej energie nazývané akustické fonóny. Táto fonónová emisia sa deteguje ako rezonančné zvýšenie elektrického odporu tranzistora; v graféne je pozorovaný nadzvukový tresk.
Výskumníci tiež pozorovali kvantovo mechanický analóg Dopplerovho javu pri nižších prúdoch, keď energetické elektróny preskakujú medzi kvantovými cyklotrónovými dráhami a emitujú akustické fonóny s dopplerovským posunom nahor alebo nadol svojich frekvencií v závislosti od smeru zvuku vlny.
Ochladením svojho grafénového tranzistora na teplotu tekutého hélia tím zistil tretí jav, pri ktorom elektróny navzájom interagujú prostredníctvom svojho elektrického náboja a robia „bezfonónové“ skoky medzi kvantovými energetickými hladinami pri kritickej rýchlosti, takzvanej Landauovej rýchlosti.
Dr. Mark Greenway z Loughborough, jeden z autorov článku, povedal: „Je fantastické pozorovať všetky tieto efekty súčasne v grafénovej monovrstve. Je to vďaka vynikajúcim elektronickým vlastnostiam grafénu, ktoré nám umožňujú skúmať tieto nedokonalosti. rovnovážne kvantové procesy podrobne a pochopte, ako sa elektróny v graféne, urýchlené silným elektrickým poľom, rozptyľujú a strácajú svoju energiu. Landauova rýchlosť je kvantovou vlastnosťou supravodičov a supratekutého hélia. Bolo teda obzvlášť vzrušujúce zistiť podobný efekt v disipatívnej rezonančnej magnetorezistencie grafénu.“
Zariadenia boli vyrobené v National Graphene Institute, University of Manchester.
Dr. Piranavan Kumaravadivel, ktorý viedol dizajn a vývoj zariadení, poznamenáva: „Veľká veľkosť a vysoká kvalita našich zariadení sú kľúčové pre pozorovanie týchto javov. Naše zariadenia sú dostatočne veľké a čisté na to, aby elektróny interagovali takmer výlučne s fonónmi a inými elektrónmi. Očakávame že tieto výsledky budú inšpirovať k podobným štúdiám nerovnovážnych javov v iných 2D materiáloch. Naše merania tiež ukazujú, že vysokokvalitné grafénové vrstvy môžu niesť veľmi vysoké kontinuálne prúdové hustoty, ktoré sa približujú k hustote dosiahnuteľným v supravodičoch. Vysoko čisté grafénové tranzistory by mohli nájsť budúce uplatnenie pri aplikáciach elektronických technológií v nanorozmeroch“.
Zdroj: nano-magazine.com, http://fumacrom.com/2yJks

Energia z morských vĺn vďaka nanogenerátorom.

Energia z morských vĺn s flexibilným nanogenerátorom podobným morským riasam. Vlny oceánu môžu byť silné a obsahujú dostatok energie na to, aby počas búrok tlačili piesok, kamienky a dokonca aj balvany. Tieto vlny, ako aj menšie a miernejšie, by sa dali využiť ako...

Autonómne nanostroje inšpirované prírodou

Lekárski výskumníci UNSW, inšpirovaní spôsobom interakcie molekúl v prírode, konštruujú všestranné stroje v nano rozmeroch, aby umožnili ich väčší funkčný rozsah. Aby odolali náročným podmienkam v živých organizmoch, molekulárne stroje musia byť trvalo skonštruované...

Nový magnetický fenomén s priemyselným potenciálom

Skúmanie sveta veľmi, veľmi malého je pre fyzikov krajinou zázrakov. V tejto nanoúrovni, kde sa študujú materiály tenké ako 100 atómov, sa objavujú úplne nové a neočakávané javy. Príroda sa tu prestáva správať spôsobom, ktorý je predvídateľný makroskopickým zákonom...

Nové modelovanie magnetickými nanočastícami

Výskumníci zo Štátnej univerzity v Severnej Karolíne vyvinuli nový výpočtový nástroj, ktorý používateľom umožňuje vykonávať simulácie multifunkčných magnetických nanočastíc v bezprecedentných detailoch. Tento pokrok pripravuje pôdu pre novú prácu zameranú na vývoj...

„Nanopoháre“ zachytávajú rozpustený oxid uhličitý a toxické ióny z vody.

„Nanopoháre“ zachytávajú rozpustený oxid uhličitý a toxické ióny z vody. Oxid uhličitý z atmosféry sa môže rozpúšťať v oceánoch, jazerách a rybníkoch a vytvárať bikarbonátové ióny a ďalšie zlúčeniny, ktoré menia chémiu vody s možnými škodlivými účinkami na vodné...

Vedci vyvinuli nanolaser s unikátnymi vlastnosťami.

Vedci vyvinuli nanolaser s unikátnymi vlastnosťami. Výskumný tím pod dohľadom Yuriho Kivshara, vedúceho výskumu na škole fyziky a inžinierstva ITMO a profesora Austrálskej národnej univerzity, vykonáva výskum v oblasti nanolaserov. Nedávna publikácia v Nature...

Boj s hubovými infekciami: Obrovský skok pre nanotechnológie.

Boj s hubovými infekciami: Obrovský skok pre nanotechnológie. Majú zhruba rovnakú veľkosť ako častice koronavírusu a sú 1000-krát tenšie ako ľudské vlasy. Novo skonštruované nanočastice vyvinuté vedcami z University of South Australia, dosahujú pri liečbe plesní...

Tlačená, flexibilná a nositeľná elektronika.

Tlačená, flexibilná a nositeľná elektronika.   Inteligentné senzory nemusia obsahovať len obväzy alebo náplaste. Elektroniku budeme čoskoro vedieť tlačiť a nosiť oblečenú.   Dopyt po flexibilnej nositeľnej elektronike bol sprevádzaný dramatickým nárastom...

Nový senzor deteguje stále menšie nanočastice

Bežné mikroskopy vytvárajú zväčšené obrazy malých štruktúr alebo predmetov pomocou svetla. Nanočastice sú však také malé, že sotva absorbujú alebo rozptyľujú svetlo a preto zostávajú neviditeľné. Optické rezonátory zvyšujú interakciu medzi svetlom a nanočasticami:...

Vývoj najmenšieho ozubeného kolesa na svete

Stále menšie a zložitejšie – bez miniaturizácie by sme dnes nemali komponenty, ktoré sú potrebné pre vysokovýkonné notebooky, kompaktné smartfóny alebo endoskopy s vysokým rozlíšením. V súčasnosti prebieha výskum v nanoúrovni na spínačoch, rotoroch alebo motoroch,...